Sustained increase in intracellular calcium promotes neuronal survival.
نویسندگان
چکیده
Ciliary ganglion neurons, half of which normally suffer developmental death in the embryo, will survive in culture in medium supplemented with depolarizing concentrations of potassium. It is not known how elevated potassium acts inside the cell to promote survival. We report here that depolarizing concentrations of extracellular potassium promote neuronal survival by causing a sustained increase in intracellular calcium. Raising extracellular potassium from 5 to 40 mM, an optimal concentration for survival, caused a sustained increase in intracellular calcium from 250 nM to greater than 600 nM. By 26 hr, at which time greater than 90% of neurons in 5 mM potassium had died, the calcium concentration of neurons in 40 mM potassium was still above 400 nM. Reduction of extracellular potassium from 40 to 5 nM, which prevents the increase in survival, also reduced intracellular calcium back to rest levels. PN200-110, a dihydropyridine calcium channel blocker that inhibits the survival-promoting effect of elevated potassium, also prevented and reversed the potassium,-mediated increase in intracellular calcium. In addition, there was a strong, quantitative correlation between the percentage of neuronal survival and the intracellular calcium concentration over a wide range of extracellular potassium concentrations. These results suggest that elevated potassium opens dihydropyridine-sensitive calcium channels, causing a sustained increase in intracellular calcium that quantitatively determines the number of surviving neurons.
منابع مشابه
Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death.
Histone deacetylase 4 (HDAC4) undergoes signal-dependent shuttling between the cytoplasm and nucleus, which is regulated in part by calcium/calmodulin-dependent kinase (CaMK)-mediated phosphorylation. Here, we report that HDAC4 intracellular trafficking is important in regulating neuronal cell death. HDAC4 is normally localized to the cytoplasm in brain tissue and cultured cerebellar granule ne...
متن کاملThe modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)
Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...
متن کاملCalmodulin is involved in membrane depolarization-mediated survival of motoneurons by phosphatidylinositol-3 kinase- and MAPK-independent pathways.
In the present work, we find that the elevation of extracellular K+ concentration promotes the survival of chick spinal cord motoneurons in vitro deprived of any neurotrophic support. This treatment induces chronic depolarization of the neuronal plasma membrane, which activates L-type voltage-dependent Ca2+ channels, resulting in Ca2+ influx and elevation of the cytosolic free Ca2+ concentratio...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 8 شماره
صفحات -
تاریخ انتشار 1991